1. Penjumlahan dan pengurangan polinomial dapat dilakukan dengan cara.
Jumlahkan atau kurangi nilai koefisien dengan suku-suku yang sama, sehingga diperoleh bentuk yang paling sederhana.
2. Perkalian Polinomial dapat dilakukan dengan cara
mengalikan sepasang-sepasang polinomial dimana setiap suku di pasangan pertama dikalikan dengan setiap suku di pasangan kedua secara terurut, sehingga jumlah hasil kalinya sama dengan hasil kali jumlah suku di pasangan pertama dengan pasangan kedua.
Selain Operasi diatas untuk operasi pembagian polinomial dengan cara bagan akan di bahas di postingan lainya.
Jumlahkan atau kurangi nilai koefisien dengan suku-suku yang sama, sehingga diperoleh bentuk yang paling sederhana.
2. Perkalian Polinomial dapat dilakukan dengan cara
mengalikan sepasang-sepasang polinomial dimana setiap suku di pasangan pertama dikalikan dengan setiap suku di pasangan kedua secara terurut, sehingga jumlah hasil kalinya sama dengan hasil kali jumlah suku di pasangan pertama dengan pasangan kedua.
Selain Operasi diatas untuk operasi pembagian polinomial dengan cara bagan akan di bahas di postingan lainya.
Jika susah dalam memahami penjelasannya, berikut disediakan video pembahasan singkatnya.
Dalam perkalian suatu polinomial ingatlah salah satu sifat bilangan berpangkat yang sudah dipelajari yaitu $a^m.a^n=a^{m+n}$ dengan $a,m$ dan $n$ adalah suatu bilangan. Untuk lebih jelasnya silahkan simak dan pahami contoh soal berikut
Contoh Soal
Soal No 1
Bentuk sederhana dari penjumlahan $(2x^3-3x^2-5x+6)+(-2x^3+3x-6)$ adalah ... .
Dengan mengikuti syarat penjumlahan maka akan diperoleh.
$=(2x^3-3x^2-5x+6)+(-2x^3+3x-6)$
$=2x^3-3x^2-5x+6-2x^3+3x-6$
$=(2-2)x^3-3x^2+(-5+3)x+6-6$
$=-3x^2-2x$
Jadi bentuk yang paling sederhana adalah $-3x^2-2x$
$=(2x^3-3x^2-5x+6)+(-2x^3+3x-6)$
$=2x^3-3x^2-5x+6-2x^3+3x-6$
$=(2-2)x^3-3x^2+(-5+3)x+6-6$
$=-3x^2-2x$
Jadi bentuk yang paling sederhana adalah $-3x^2-2x$
Soal No 2
Bentuk sederhana dari penjumlahan $(2x^4-3x^3-5x+6)-(-2x^3+3x^2+7x-6)$ adalah ... .
Dengan mengikuti syarat pengurangan maka akan diperoleh.
$=(2x^4-3x^3-5x+6)-(-2x^3+3x^2+7x-6)$
$=2x^4-3x^3-5x+6+2x^3-3x^2-7x+6)$
$=2x^4+(-3+2)x^3-3x^2+(-5-7)x+6+6$
$=2x^4-x^3-3x^2-12x+12$
Jadi bentuk yang paling sederhana adalah $2x^4-x^3-3x^2-12x+12$
$=(2x^4-3x^3-5x+6)-(-2x^3+3x^2+7x-6)$
$=2x^4-3x^3-5x+6+2x^3-3x^2-7x+6)$
$=2x^4+(-3+2)x^3-3x^2+(-5-7)x+6+6$
$=2x^4-x^3-3x^2-12x+12$
Jadi bentuk yang paling sederhana adalah $2x^4-x^3-3x^2-12x+12$
Soal No 3
Bentuk sederhana dari penjumlahan $(-3x^3-4x^2+3x+7)-(-x^3+5x^2+x-8)$ adalah ... .
Dengan mengikuti syarat pengurangan maka akan diperoleh.
$=(-3x^3-4x^2+3x+7)-(-x^3+5x^2+x-8)$
$=-3x^3-4x^2+3x+7+x^3-5x^2-x+8$
$=(-3+1)x^3+(-4+5)x^2+(3+1)x+7+8$
$=-2x^3+x^2+4x+15$
Jadi bentuk yang paling sederhana adalah $-2x^3+x^2+4x+15$
$=(-3x^3-4x^2+3x+7)-(-x^3+5x^2+x-8)$
$=-3x^3-4x^2+3x+7+x^3-5x^2-x+8$
$=(-3+1)x^3+(-4+5)x^2+(3+1)x+7+8$
$=-2x^3+x^2+4x+15$
Jadi bentuk yang paling sederhana adalah $-2x^3+x^2+4x+15$
Soal No 4
Bentuk sederhana dari perkalian $(2x^2+3x-3)(x+4)$ adalah ... .
Dengan mengikuti syarat perkalian maka akan diperoleh.
Jadi bentuk yang paling sederhana adalah $-2x^3+x^2+4x+15$
Soal No 5
Tidak ada komentar:
Posting Komentar